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Abstract 

 
Porosity is a major concern in the production of light metal parts. 
This work aims to identify some of the mechanisms of 
microporosity formation during the gravity-poured castings of 
magnesium alloy AE42. Two graphite plate molds and a ceramic 
cylindrical mold were selected to produce a wide range of cooling 
rates.  Temperature data during cooling was acquired with type K 
thermocouples at 60 Hz at two or three locations of each casting.  
The microstructure of samples extracted from the regions of 
measured temperature was then characterized with optical 
metallography. The results of this study revealed the existence of 
oxide film defects, similar to those observed in aluminum alloys. 
The cooling rates showed significant effect on the formation of 
porosity.  
 

Introduction 
 
Magnesium cast alloys, such as AE42, are gaining increasing 
attention in the struggle for weight saving in the automobile 
industry [1]. However, in many cases the consistent production of 
sound AE42 castings is marred by the stubborn persistence of 
some defects that are difficult to remove: porosity, 
macrosegregation, oxide entrainment, irregularity of 
microstructure, etc. The formation of microporosity in particular 
is known to be one of the primary detrimental factors controlling 
fatigue lifetime and total elongation in cast light alloy 
components.  

 
Many efforts have been devoted to investigate the mechanisms of 
porosity formation in the last 20 years. More recently, new 
mechanisms of pore formation based on entrainment of oxide 
films during the filling of aluminum alloy castings have been 
identified and documented [2-7]. Oxide film defects are formed 
when the oxidized surface of the liquid metal is folded over onto 
itself and entrained into the bulk liquid. A layer of air is trapped 
between the internal surfaces of the oxide film, which leads to the 
porosity formation in the solidified castings. The entrainment 
process due to surface turbulence is usually rapid, in the order of 
milliseconds, therefore the time is very limited to form new oxide 
film on the fresh surface, so that the entrained oxide film can be 
very thin, in the order of nanometers. [2] 
 
Oxide film defects may be contained in most reactive liquid 
metals such as Al and Mg due to surface turbulence during the 
melting, pouring and transfer processes in casting. These defects 
have been observed on the fracture surfaces of tensile test 
specimens and the oxides have been identified by SEM-EDX 
analysis [7-8]. In contrast with the efforts devoted to Al-based 
cast alloys, few studies have been done in Mg alloy castings. 
Griffiths and Lai [8] investigated the nature of the oxide film 
defects in pure Mg castings. They found double oxide film defects 
comprised of folded MgO films on the fracture surface of tensile 
test bars taken from the castings.  

 

In this study, we examined the microstructure of magnesium alloy 
AE42 ingots gravity-poured in plate graphite molds. Two graphite 
plate molds and a ceramic cylindrical mold were selected to 
produce a wide range of cooling rates.  Temperature data during 
cooling was acquired with type K thermocouples at 60 Hz at two 
or three locations of each casting. The microstructure of samples 
extracted from the regions of measured temperature was then 
characterized with optical metallography. This work investigated 
the nature of oxide film and porosity defects in AE42 for different 
cooling rates.  
 

Experimental Procedure 
 
Design of casting  
 
The cast ingots or slab castings were produced at the facilities of 
Oak Ridge National Laboratory (Oak Ridge, TN). Molds A and C 
were made of graphite.  Mold type E was made of a clay-graphite 
material, which had a lower thermal conductivity than that of 
molds A and C.  Molds type A and C were rectangular, while 
mold type E was cylindrical.  The thickness of wall for molds A 
and C was 0.5 in (12.7 mm), while that of the E mold was 0.2 in 
(5.1 mm).  The width, height, and thickness dimensions for molds 
A and C were 3×5×1.5 in (76.2×127×38.1 mm) and 5.5×11×2.25 
in (140×279×57 mm), respectively.  The height and outer 
diameter of mold E was 3.6×1.8 in (91.4×45.7 mm). The 
geometry of each mold is shown in Figure 1.   

 
 

    (a)                             (b)                                (c) 
 
 
 
 
 
 
 

Figure 1. Cross sections of molds used for AE42 castings.  
(a) Mold A: Plate graphite mold with plate thickness of 0.5 inch;  
(b) Mold C: plate graphite mold with plate thickness of 1.25 inch;  
(c) Mold E: cylindrical ceramic mold. 
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Several thermocouples were placed in the empty molds per each 
casting. Figure 2 shows the thermocouple fixtures on the top view 
of empty molds for mold type C and A in the same scale. For the 
C-mold, the thermocouples were placed at distances of 
approximately 1.35, 6.2, and 8.4 in (34.3, 157.5, and 213.4 mm) 
from casting end.  In order to assess the reproducibility of the 
data, for molds A and E, two thermocouples were placed at 
approximately in the center of the casting, i.e., at distances of 2.3 
and 1 in (58.4 and 25.4 mm), respectively, from the casting end. 
 

  
 
 
 
 

 
 
 
 
The tested AE42 alloy composition was Mg, 3.96%Al, 0.35%Mn, 
0.01%Si, 0.001%Ni, 0.007%Zn, 0.0003%Fe, 0.0008%Cu, and 
8ppm Be. The furnace charge was in the form of pre-alloyed 
ingot. The weight of the melt was 8 kg and the alloy was melted 
in an electrical resistance furnace.  For protection, Ar and 
CO2+3%SF6 were used as cover gases.  The pouring temperature 

for AE42 was approximately between 680 to 700 oC. No 
degassing procedures were used.  All castings were poured from 
one melt. The melt was poured directly from the crucible to 
minimize temperature decrease during pouring (Figure 3).  
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The pouring temperature was approximately 715, 695, and 725 oC 
for castings type C, A, and E. All the molds were not preheated 
and were coated with boron nitride. In order to assess the 
reproducibility of the results, two molds were used for each type 
of casting.  Temperature data was acquired with thermocouples 
type K at approximately 60 Hz.  The cooling curves are shown in 
Figure 4. The cooling curves are labeled in the following format: 

Figure 4 - Cooling curves for AE42 Mg alloy castings. (a) mold
type A, (b) mold type C, (c) mold type E. 

Figure 2. Top view of empty molds showing thermocouple fixtures. 
(a) mold type C, (b) mold type A (same scale). 

(a) (b) 

(b)

(c)

Figure 3. Pouring of casting type C. 
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xn_m, where x – is a letter, indicating the mold type, n – indicates 
casting number (1 or 2), m – indicates thermocouple (1 or 2) for 
molds A and E and position of thermocouples for molds type C 
(b-bottom of casting, c-center of casting).  The cooling curves 
show an excellent reproducibility. The data measured by the 
thermocouple near the top of the casting was discarded because of 
turbulence in this region. As shown in Figure 4, the cooling rates 
for AE42 alloy castings were approximately 20, 5, and 1 °C/s for 
molds A, C, and E, respectively. 
 
Sample preparation for optical metallography 
 
Two samples for each ingot were cut near the location of the 
thermocouple for each as-cast ingot and then hot-mounted in 
phenolic resin, with one side of the plate flush with the mounted 
surface. The samples were then polished using a machine disc 
grinder. The silicon carbide abrasive papers of grade 500 and 
2400 μm grits were used successively. In between papers the 
samples were cleaned by ethanol thoroughly. The samples were 
then cleaned in a sonic bath before being examined by optical 
microscope. Approximately 20 to 30 images were taken for each 
sample.  
 

Results and Discussion 
 
A common feature found in all the samples is that the pores were 
observed to be smaller at higher cooling rates. Porosity was the 
major defect observed in the tested specimens. Figure 5 shows 
typical pore morphology at a location close to the thermocouple in 
the AE42 C1 sample from the mold type C.  
 

 
 
 
 
 
Figures 6-8 show the pore morphology for different samples at 
different cooling rates. Figure 6 shows a very clean surface for the 
samples A1-1 and A2-2 from the mold type A with the highest 
cooling rate of 20 °C/s. The maximum size of pores found in the 
sample is 33 µm in diameter. Figure 7 shows a group of pores 
found in the samples C1-1 and C2-1 from the mold type C with 
cooling rate of 5 °C/s. This type of pores was most probably 
caused by interdendritic shrinkage. Long pieces of oxide films, 
some longer than 1 mm, were observed in the samples E1-1 and 
E1-2 from the mold type E with cooling rate of 1 °C/s (Figure 8). 

The distinct precipitation upon both sides of the film might 
suggest the former existence of a double oxide that was later torn 
open, with the higher precipitation occurring on the wetted side. It 
is interesting to note that oxide films were found only in the 
samples from ingots cast at the lowest cooling rate. This fact 
needs confirmation by examining more samples. 
 

 

(a)

 

 

(b)

 
 

 

Figure 6 Typical micrographs of samples (a) A1-1, (b) A2-2.  

(a)

Figure 5. Typical pore morphologies formed at the location
close to the thermocouple in casting AE42 C1 sample. 
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Conclusions (b) 
 
The microstructure of plate-shaped ingots of magnesium alloy 
AE42 obtained by gravity-pouring in a graphite mold was 
analyzed by optical metallography. Abundant porosity was found 
throughout the ingots.  Pieces of oxide film, some of them 1 mm 
or longer, were also detected in many polished cross sections.  
Distinct features on both sides of the films suggest that they might 
be remnants of torn double oxide films or bifilms entrained during 
the pouring. The effects of cooling rate on the formation of 
porosity are significant. Smaller size and lower volume fraction of 
porosity were observed at higher cooling rate. Surprisingly, the 
oxide films were only found at lower cooling rates in this study. 
The relations between the cooling rate and oxide film are still 
unclear.  
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